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By Hans Ekstein
SUMMARY

The width of a Debye-Scherrer line under the combined influence of
spectral width of the primary radigtion and of the small size of the
crystal grains is -calculated, omitting all geometric causes of line
broadening. The shape of the crystals is assumed spherical, with the
gsame diameter for all grains. The orientation is assumed to be random,
with negligible statistical fluctuations. It is shown that the width
under these circumstances is the sum of that width which is obtained
with very large crystals ("spectral” width) and that which is obtained
with monochromatic radiation ("size" width).

INTRODUCTION

In 1926, Laue (reference 1) calculated the angular width of a .
beam diffracted by a uniformly random mass of crystals of uniform size
and shape when it is irradiated by a parallel monochromatic beam. The
phyeical problem is somewhat i1li-defined, since the shape of the indi-
vidusl crystala is evidently widely different, However, the fact that
experimental megsurements are quite reproducible supports the assumption
of a reasonable shape common to all crystals. Various workers have
since then used different shapes and different approximation methods.
Patterson (reference 2) derived a rigorous solution for the case of
spherical shape for all crystals. Comparing this result with the
approximate solution obtained by Laue's method, he concludes that one
part of Laue's method (the tangent-plane approximation) is quite
satisfactory, whereas the use of the approximation function is scmewhat
doubtful. Since the basic assumption of equal shape for gll crystals
is quite far from reality, it does not seem worth while to attempt high
mathematical accuracy in calculating the form of the line. Laue's
approximation method will be used in the following computations, and,
for mathematical convenience, a spherical shape for the crystal grains
will be assumed. TIn the previous papers, the réason for considering
the monochromatic case only was the fact that the influence of the
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actual spectral width of the characteristic radiation was considered
negligible (reference 3). However, it has been shown (reference 4)
that, for measurements of high precision, the influence of the spectral
width, far from being negligible, becomes the decisive limiting factor.
Consequently, it has become desirable to calculate the line width for
the case of finite spectral width of the primary radiation. An investi-
gation of this method of calculation was conducted at the Armour
Research Foundation under the sponsorship and with the financial
assistance of the National Advisory Committee for Aeronautics.

This report is part of a cooperative project with Dr. Stanley Siegel.

CALCUILATION OF INTENSITY DISTRIBUTION

Consider first the diffraction of a monochromstic wave by a single
crystal in g definite direction. In the usual representation in
Fourier space, as shown in the following diagram, CO 1s the wave vector
having the direction of the incident beam and length 1/A,

&

if A 1is the wave length and O is the origin of the reference system.
The intensity scattered in the direction of CR is then proportional

to the value of the interference function [¥|2 at the point of radius
vector R, that 1s, the point where the diffracted wave vector intersects
the Laue sphere. If a reciprocal lattice point 4; 1is close to the

point R, the interference function gt R. will be very nearly equal to
the contribution of the lattice point 4; (reference 2). Since a
spherical crystal is considered, this dominant term of the interference
function will have spherical symmetry with respect to the lattice
point A;. Therefore, the scattered intensity will be
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7« |¥(r)]2 _ (1)

that is, only a function of the length of the vector R' which joins
the points A, and R. )

In order to find the intensity diffracted by a mass of randomly
oriented crystals of equal shape, the reciprocal lattice, that is, the
point éh’ might be rotated about O, the points C and R being

fixed, and the intensity (equation (1)) integrated over all positions
of the crystal. Alternatively, the triangle COR might be rotated
about O but with the point Ah fixed. Thus, the total intensity

diffracted in the direction 6 by the wave length A = 1/k is

I = [lWanl2 e (2)

where  is the solid angle about O (as ghown in the following
diagram). :
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If the spectral intensity distribution is given by a function f(k),
the total intensity contributed by all wave lengths 1s

Ja fflw(R')Ff(k) do dk , (3)
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Since k and R are related by
(k)

R =2k gin 6

equation (3) becames:

(5)

1 fﬂg deH,(R.)lzRe a0

J «
© 2 8in @
The exact expression for |W|2 is too unwieldy for analytical purposes.
In its place the approximation function )

2
(6)

o

is used, following Laue's method, where p 1s the radius of the crystal.
The constant o _is determined so that the ratio of space integral to

maximum value becomes identical for the exact function and the approxi-
According to Patterson (reference 2), and using

mation, equation (6).
the. above ‘notation

w = s Jf4/3 = 3.450 (7

The speétral distribution of energy near a characteristic line is given
with sufficient approximgtion by an expression of the type -

(8)

£(k) = A
(k - k0>2 + B°

where A and B are constants.

This must be compared with the form in which the intensity function
in its dependence upon XA 1is usually given; namely,
dJ C ' ' .
& = (9)
da 2 w\2

) N ¥

( xo) + (2)_
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where w 1s the half-width of the line, or
2
, Ck
re)x 2 0 (10)

dk 2
(= - )” + (57

Comparison with equation (8) shows that the variable k in the second
term of the denominstor should be replaced by k,. Therefore,

&

i

£(k) = - A | (11)
(k-ko)m(ioje | h

Returning to equations (5) and (6), it is necessary to perform first
the Integration )

2
R
p2 a0

3

over the surface of a sphere of radius R.. Replacing, as usual, the
sphere by its tangent plane normal to OAj (see preceding diagram),

(12)

a

R® an = [ex dr d 2
2 2
(R2 + J%) U0 JO t(a-R¥2+ 24+ L (l - R)2 + L
w . 2 m2
(13)
where 1r 1is the distance between the point B and a point on the

tangent plane, and the usual notation OAh = 1/d is used. By
equations (4), (5), (11), and (13),

. ® 3 ' dk
J = J[

0 [(k - o) + (@)ﬂ K% - 2k sin e>2 + éjl b ain? o
‘ | (14)
is obtained.
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Since only the neighborhood of k = k, contributes substantially

to the integral, the lower 1limit of integration may be taken to be -«
instead of 0. Thus, ’ .

o
1 dk )
J « (15)
Sinll-eA/-‘oo k2+ _l___)2 k+ko_.___.l >2+_(&_2W)2
2w sin 6, "2d sin 6 2
an integral which can be calculated by elementary methods:
’ -
2w 1
kK~ =+
Je (—X ' S2 Epeind =+ (16)
sinh e k02W X 1 2w 1
losin 6 {0 " 23 gin 8) " \"2 T Zwsin b
7
If
kow=-)"1=cr, (17)
o
gin 6 = z sin 6_ = % = 7 zZ - Z. =AMz (18)
- 0—2d‘k0_ (o] - o
Py
1
== —2-=p (19)
k@  3.450
Equation (16) becomes
B
+
T < 2 - 5 (20)
favA L B
Z + =[a +
o [(F) i 8]
Since z = sin 6 varies little over the width of the line, z, may be
written for 2z 1in equation (20). The intensity then becomes:
. 1
(A sin 8)° + [8in< 65| [ + Q
% Ao 3.45p sin 9
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If O 1is not too close to /2, the following can be used:

e

A sin 6 = cos 6A6=%cos AD (22)
where the deviatlon angle
| o = 26 (23)
is used. The intensity becomes:
1
J« > (24)
2 A
(A9)  + ten® HF Q
2\Lo  3.45p sin @/2

The intensity distribution is described by a resonance curve with the
half-width

0.58

W = —_—
p.cos @/2

(25)

S

tan 9-+
2

The first term is due to the spectral width alone; the second is due to
the finite particle size alone. If the "integral breadth"

fm J(o) do
) — (26)
J(®)

is used to characterize the line shape, the additivity expressed in
equation (25) is also conserved. Indeed,

p- 20/W__xfow . 0, 0.58 (27)
(g/w)2 2\hg 2 p cos ¢/2
DISCUSSION

The half-value angular width of a line obtained by plane-parallel
characteristic radiation on a target of a uniform mass of crystals is
the sum of two terms: The "spectral”™ width which results for very large
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crystals; and the "size" term which is obtained by a monochromastic
radiation impinging upon crystals of finite size. The additivity of
the widths 1s not obvious. - . ’ '

In Jones! semiempirical calculations, the breadth i1s not the sum
of the "size" term and another term, independent of size, but the
relation is complicated. The simple nature of the results presented
herein is due to the omission of "geometric" broadening effects.
However, these results have physical significance, because the geometric
width can be reduced to a negligible quantity, if the time of exposure
can be increased. In previous experiments (reference.h), the geometric
factors were, in fact,.smsll as compared with other factors.

Many authors (reference 5) propose for the line breadth a formula
of the type

2

2

2

where b; 1is the size term and by the breadth of e line obtained with

very large crystals, this breadth being caused by all factors, geometrical
and spectral. It appears that at least for negligible geometric width,
this formula is not correct.

It is interesting to note that the ratlio of the two terms iIn
equations (25) or (27) is a function of the diffraction angle, namely,
proportional to sin ¢/2. This means that the effect of the spectral
width is negligible for small diffraction angles, whereas it tends to
have the same effect ag size broadening for back-reflection.

In conclusion, the considerations of previous work (reference 1)
remain valid for crystals of finite size, provided that the size term
is added to the spectral term of the line width.

Armour Research Foundation
Chicago, I1l., June 30, 1948
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